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APPENDIX A

Method of Calculation for Rate of Weather Involvement in GA Fatalities

 In the Introduction of this report, we stated “Data derived by us from National Transportation Safety Board 
statistics (1995-1997) support this assertion, showing IMC implicated in approximately 32% of GA fatalities.” Here 
is how we calculated that figure:

We started with data from the National Transportation Safety Board (NTSB) Annual review of aircraft accident 
data, U.S. general aviation, calendar years 1995-97 (the latest available year was, indeed, 1997). The figure of 90% 
GA accidents occurring in VMC was taken from the text, which claimed “More than 90 percent of accidents occur 
in visual meteorological conditions” (emphasis ours, NTSB, 1997, p. 2 used to illustrate). So we assumed that 90% 
was an estimate, but a conservative one. We then followed these steps:

• The reports state that 90% of GA accidents occur in VMC (visual meteorological conditions).
• Therefore, by deduction, (100-90) = 10% must occur in IMC (instrument meteorological conditions).
• The reports state that 68, 63, and 69% of IMC accidents during their respective years involved fatalities 

(average = 66.7%), as opposed to 16, 15, and 16% of VMC accidents, respectively (average = 15.7%).
• If 10% of accidents involve IMC, and 66.7% of these are fatal, then (10% * 66.7%) = 6.7% of overall ac-

cidents therefore involve IMC PLUS fatalities
• If 90% of accidents involve VMC, and 15.7% of these are fatal, then (90% * 15.7%) = 14.1% of overall 

accidents therefore involve VMC PLUS fatalities.
• Therefore, ((6.7 / (6.7+14.1)) = 32%) is the ratio of (fatal accidents involving IMC / total fatal accidents), 

meaning that IMC is implicated in approximately 32% of GA fatalities.

Year % GA acci- % in % of IMC acci- % of VMC
dents in VMC IMC dents fatal accidents fatal

1995 90 10 68 16
1996 90 10 63 15
1997 90 10 69 16

average 66.7 15.7

10%*66.7= 6.7 6.7 / 20.8 =
90%*15.7= 14.1 0.32

total % fatal 20.8
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APPENDIX B

Participant Debrief Form

S # ________

q What is your own normal personal minimum for VFR visibility? ________
q Your normal personal minimum for VFR cloud ceiling ________
q Are these minimums rock-solid, or do you adjust them a little, depending on the circumstances?________
q Have you ever flown this particular route before (or a similar situation)? ________
q Did the distance you had to fly through bad weather affect your willingness to take off ? ________ (for example, 

if the distance had been greater, would you have been even less inclined to take off than you were?)
q If you were in the “high-incentive” condition, did this affect your willingness to take off? ________
q Do you think having passengers would affect your willingness to take off? (increase it ____,  no change____, 

decrease it ____)
q If you had a lot more flight hours, would that have change your willingness to take off? (increase it ____,  no 

change____, decrease it ____)
q If your flight mission had been critical (for example, delivering a human heart for surgery), would that change 

your willingness to take off? (increase it ____,  no change____, decrease it ____)
q Have you ever flown a Piper Malibu before?_____  Did this affect your willingness to take off?
q It made me more willing because I was anxious to try it out ___, 
q It didn’t matter one way or the other ___, 
q It made me less willing because I was afraid I’d make more mistakes ___
q Did the fact that this was a simulation (and not reality) affect your willingness to take off? 
q It increased willingness because 

q (a) I wanted to fly the sim___ and/or 
q (b) I knew I couldn’t really get injured in it___, 

q No, it had no effect because 
q (a) it didn’t matter to me one way or the other___
q (b) there were positives and negatives but they cancelled each other out___

q It decreased willingness because
q (a) I was unfamiliar with this particular simulator___
q (b) I didn’t want to make any mistakes in front of the experimenter___

q How economically significant was the money to you?
 1__not at all 2__a little 3__fairly significant 4__significant 5__very significant
q If you were to crash in the simulator, how embarrassed would you be?
 1__not at all 2__a little 3__fairly 4__significantly 5__extremely
q Have you ever had a bad flight experience related to weather?___If so, please describe briefly below.
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APPENDIX C

Standard z-tests (e.g. skew/[standard error of skew]) showed that the demographic data were greatly 
skewed by the presence of a small number of older pilots with, for instance, a great deal of flight experience. 
Winsorizing corrected virtually all this non-normality. Appendix D explains the factors examined.
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N 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60
# Missing
Median 1.8 23.5 male priv. 50/50 183.5 80.0 35.0 5.0 3.0 0.0 25.0 10.0 5.0 2.0 1.0 0.0
Average 4.3 26.1 753.0 159.9 49.1 37.9 16.9 6.9 69.3 20.7 14.4 52.7 4.7 2.2
S.D. 7.6 8.5 2605 239.6 54.1 88.5 40.8 18.8 256.8 30.1 26.5 322.3 11.0 5.2
Max 48.25 69 20000 1200 250 560 200 125 2000 175 160 2500 75 25
Min 0.25 18 35 0 0 0 0 0 0 0 0 0 0 0
Skew 4.2 2.8 7.1 2.9 1.9 4.2 3.6 4.9 7.4 3.4 3.8 7.7 4.9 3.1
SE Skew 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31
z skew 13.67 9.07 22.95 9.47 6.05 13.51 11.57 15.84 24.13 11.15 12.29 24.86 15.90 10.09
p zskew 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Kurtosis 21.1 10.6 52.8 9.0 3.5 21.0 12.4 27.4 56.8 14.5 17.3 59.2 29.1 9.5
SE Kurt 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61
z kurt 34.8 17.5 86.8 14.8 5.7 34.5 20.4 45.1 93.3 23.9 28.4 97.4 47.8 15.5
p zkurt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Outlier(s)? yes yes yes yes yes yes yes yes yes yes yes yes yes yes
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N 59 59 57 57 57 28 56 55 47 53 50 51 46 51 40 11 55
# Missing 1 1 3 3 3 32 4 5 13 7 10 9 14 9 20 49 5
Median 4.0 2000 1 0 1 1 -1 0 1 0 0 0 3 3 3 2 0
Average 4.1 2186 0.8 0.4 0.6 0.6 -0.5 0.3 0.7 -0.2 0.2 2.7 3.2 2.3
S.D. 1.6 1213 0.7 0.6 0.5 0.6 0.5 1.3 1.2 1.3
Max 10 8000 1 1 1 1 1 1 1 1 1 1 6 5 5 5 1
Min 1 1000 0 0 0 0 -1 -1 -1 0 -1 -1 1 1 1 1 0
Skew 1.2 2.4 1.0 0.0 -1.3 0.0 0.4 0.2 0.2 0.8
SE Skew 0.31 0.31 0.32 0.32 0.35 0.34 0.33 0.33 0.37 0.66
z skew 3.75 7.77 3.08 0.02 -3.73 0.00 1.34 0.53 0.43 1.22
p zskew 0.000 0.000 0.004 0.399 0.000 0.399 0.163 0.347 0.363 0.190
Kurtosis 2.5 8.8 -0.1 -0.4 0.7 -0.1 0.4 -1.1 -1.2 0.5
SE Kurt 0.61 0.61 0.63 0.63 0.68 0.66 0.66 0.66 0.73 1.28
z kurt 4.0 14.4 -0.2 -0.6 1.0 -0.2 0.6 -1.7 -1.6 0.4
p zkurt 0.000 0.000 0.390 0.324 0.235 0.389 0.339 0.092 0.108 0.367
Outlier(s)? yes yes yes
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APPENDIX D

Complete list of factors examined

Three of these factors were not predictors, namely idnum, takeoff, and latcy. IDnum was merely the nu-
merical proxy for subject name.  Takeoff was the dependent variable. Latency was a descriptor, and could not 
be used as a discriminative predictor because maximum latency (120 minutes) was always associated with 
takeoff, anything less, with non-takeoff. Therefore, there were 83 usable predictors.

Name Description Name Description
subjnum Order in w hich S w as run asi AIS Anxiety Sensitivity Index
idnum S. ID number bis BIS-10  Barratt Impusiveness Scale total
takeoff Takeoff (yes/no) imp_plan BIS Impulsive Planning
latcy Latency (time elapsed before takeoff) imp_motr BIS Motor Impulsivity
vis Ground Visibility (statute miles) imp_cog BIS Cognitive Impulsivity
ceil_k Ceiling (in thousands of ft) impuls EIS  Eysenck Impulsivity Scale  Impulsivity
incent Financial Incentive (bonus / no bonus) ventur EIS Venturesomeness
wxsevrty Weather severity ( 1 / (Vis x Ceil) ) empath EIS Empathy
exptr Experimenter (WK or HH) hei HEI  Hazardous Events Index (Hunter)
yr_flg Year started f lying Multidimensional Personality Questionnaire
yrs_flg Years f lying wellbe MPQ Wellbeing
age Age socpot MPQ Social Potency
gender Gender achieve MPQ Achievement
type_lic License type socclose MPQ Social Closeness
inst_rtg Instrument rating (yes/no) stress MPQ Stress Reaction
fh_tot Flight hours total alienate MPQ Alienation
fh_12m FH past 12 months aggress MPQ Aggression
fh_90d FH past 90 days control MPQ Control
hp_tot High-performance aircraft hours total harmav MPQ Harm Avoidance
hp_12m HP past 12 mo tradit MPQ Traditionalism
hp_90d HP past 90 days absorpt MPQ Absorption
si_tot Simulated instrument hours total roq_c ROQ  Risk Orientation Q'naire Cautiousness
si_12m SI past 12 mo roq_p ROQ Risk Propensity
si_90d SI past 90 d sss SSS  Sensation Seeking Scale
ai_tot Actual instrument hours total anx_st STAS  State-Trait Anxiety Scale State
ai_12m AI past 12 mo anx_tr STAS Trait 
ai_90d AI past 90 d Balloon Analog Risk Task (Lejuez)
vis_min Personal visibility minimum durn_sec BART Task Duration (seconds)
ceil_min Personal ceiling minimum pumpsavg BART Average # of pumps
min_adj Adjust mins. to match the situation? pmpavglo BART Average # of pumps (low  incentive)
fln_rt Flow n this route before? pmpavgme BART Average # of pumps (med incentive)
dthruwx Did distance through the w eather matter? pmpavghi BART Average # of pumps (hi incentive)
buck_mot Was the $ bonus a motivation? (yes/no) pmpadjav BART Adjusted Ave. # of pumps
pass_mot Would passengers have been a motivation? padjavlo BART Adj. Ave (low  incentive)
fhincmot Would more flt hrs increase motivation? padjavme BART Adj. Ave (med incentive)
missnmot Was the type of mission a motivation? padjavhi BART Adj. Ave (high incentive)
mal_sub Was the type of f light simulator a motivation? pay_tot BART Total Payoff (cents)
sim_mot Was fact of being a sim (vs. reality) a motvn? pay_low BART Total Payoff (low  incentive)
simmotsb Sub-categories of sim_mot pay_med BART Total Payoff (med incentive)
buck_sig How  signif icant w as the $$ to you? pay_hi BART Total Payoff (high incentive)
crashsig Was w orrying abt crash a motivation? bang_tot BART Total Balloon Explosions
tx_mot Was traff ic a motivation? bang_low BART Balloon Explosions (low  incent)
badwx Ever had a bad w x experience? (y/n) bang_med BART Balloon Explosions (med incent)
asa Aviation Safety Attitude Scale (Hunter) bang_hi BART Balloon Explosions (high incent)



E1



E1

APPENDIX E

Statistical Issues in Logistic Regression
 Outliers. Outliers are defined for our purposes here as any score greater than 3 standard deviations above or 
below the mean. Outliers can sometimes exert an almost unbelievable effect on the statistical outcome of an analysis. 
Take, for example, a distribution of ones and zeros representing Financial Incentive, one of our predictors of Takeoff. 
For the full data set, N=60, our actual raw distribution yields the following result during SPSS logistic regression:

This result says that the probability of Incentive being a significant predictor of Takeoff is .070.
Now let us change one single value in the data distribution from a “0” to a “10” to represent, say, a typographical 

error during data coding. Changing just this one value in 60 results in the following:

Suddenly we have gone from p = .070 to p =.894 in one step—by turning a single data point into a gross outlier. 
Obviously, this says a lot about the need for accurate data coding. It also says quite a bit about how outliers can affect 
an otherwise normal data distribution. Now logistic regression does not have an underlying logical assumption of 
normality (Tabachnick & Fidell, 2000). You could, for instance, use data with any relatively symmetrical distribu-
tion. But it does have problems with outliers, as this clearly demonstrates.

 The data in this study showed outliers in the demographics, where a small number of older pilots significantly 
skewed the distributions for predictors such as age, flight hours, and years flying. Without some kind of correction, 
therefore, the effect of outliers would have led us to seriously misinterpret the statistical analysis.

 Applying a data transformation (such as a square root or logarithmic function) is a common way to deal with 
outliers. A somewhat less well-known, but equally respected treatment is winsorization (Winer, 1971, pp 51-54). 
1971). In winsorization, the two most-extreme values in the distribution (the one highest and the one lowest) are 
replaced by a copy of the next most-extreme values. For example, in the distribution

0 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 5 99 (mean 7.23, SD 20.54)

we would replace the “0” with a “1” and the “99” with a “5.”

1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 5 5 (mean 3.00, SD 1.38)

Now this new distribution is still not normal because it is too flat. But it no longer has the gross outlier it once had. 
That extreme value of “99” is still represented by a relatively high value, which preserves the ordinality (rank order) 
of the scores. But notice that there was no actual change to most of the numbers. Only two values were changed, 
and one of those was a very modest change from a “0” to a “1.” Whereas, if we had applied a mathematical function 
such as a square root to shrink the “99” closer to the mean, almost all of the values would have been affected. Here 
winsorization exerts its biggest effect on the greatest offender, which is exactly how data conditioning should work. 
This illustrates how this technique can sometimes preserve the spirit and actuality of a distribution much better than 
can some of the more routinely used methods. For this reason, it was the method of choice for our data.

Variables in the Equation

.981 .541 3.287 1 .070 2.667
-.847 .398 4.523 1 .033 .429

INCENT
Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

Variable(s) entered on step 1: INCENT.a.

Variables in the Equation

-.027 .204 .018 1 .894 .973
-.319 .294 1.171 1 .279 .727

INCENT
Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

Variable(s) entered on step 1: INCENT.a.
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If a distribution has more than one outlier, say

0 0 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 47 99 (mean 9.09, SD 22.23)

we simply apply the winsorization procedure twice, to yield

1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 47 47 (mean 6.82, SD 13.06)

at stage one and

2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 5 5 (mean 3.18, SD 1.14)

at stage two. In this example, the two-stage winsorization affects 6 values, rather than just 2. For this reason we have 
to be careful in repeating this process too often, since it can lead to the antithetical problem of range restriction. 

 In this, study winsorization was limited to no more than 2 stages. For example, in the full data set (N=60) 16 
demographic variables were seen to have outliers > 3 SD, and therefore received either a 1- or 2-stage winsorization, 
depending on what was needed to eliminate these outliers. After treatment, all 16 variables emerged corrected to 
tolerance.

 A final point worth mentioning is that winsorization has a net result of making our statistical analysis more 
conservative. This happens precisely because the distributions’ ranges and variances contract during conditioning, 
and any time variance contracts, p-values generally contract as well. This is not true with purely ordinal statistics, 
because these calculate their value based on nothing more than rank order. But both chi-square and logistic regres-
sion do not fall into that category. While logistic regression is often touted as being distribution-free, in fact, we 
have graphically illustrated that things are a bit more complex. Outliers skew its innermost calculation of likelihood 
ratios (SPSS, 2004). However, the data conditioning process employed here allowed us to successfully treat data and 
to present p-values representing useful-yet-conservative estimates of statistical reliability.

 Correction for Familywise Error. Another important issue is the one of correcting p-values to account for the 
number of predictors examined. Most statisticians recommend some sort of correction for experimentwise Type I 
error (unwarranted rejection of the null hypothesis). Otherwise, if we do many tests, odds are that some will be 
“significant” simply by chance.

 However, we consciously chose to deviate from that standard procedure because, in an exploratory study such 
as this, such rigor, while admirable in one sense, would most certainly have the net result of too much Type II error, 
that is, failure to detect a true effect where there was one. And, while the danger of inflated experimentwise Type I 
error was fully appreciated, we also felt it made more sense to report low p-values where found, because these really 
do represent the best guess we have regarding effect.

 The ideal way to resolve the problem, of course, is to run Monte Carlo simulations to get estimates for mean 
predictivities and R2s, given specific parameters of specific models. This was done in Part II of this report. Another 
accepted approach is to replicate studies or parts of studies, using different participants. That will be done in follow-
up studies, whenever possible.
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APPENDIX F

Brief Description of Logistic Regression
 Logistic regression is a statistical technique specially constructed for use with discrete dependent variables, for 

example, Takeoff versus No Takeoff. It is a very useful technique, but it is also extremely easy to miscode, misunder-
stand, and misinterpret. The best way to understand it is through a combination of mathematics and example. 

 Regression is the search for factors that predict other factors. In this experiment, we wanted to predict the 
likelihood that an average pilot would take off into known marginal weather, given the added influence of financial 
incentive.  Three of our predictive factors (Visibility, Cloud Ceiling, and Financial Incentive) were under experimental 
control; the rest reflected either demographic or personality characteristics of each individual pilot.

 Logistic regression uses an equation to predict the outcome of an event, in this case Takeoff versus No Takeoff 
(Dreyszig, 1972; Norušis, 1999; SPSS, 2004). This equation is

  (1)

where e is the natural log (approximately 2.718), B
0
 (beta-sub-zero) represents a constant, and B

i
 is the correspond-

ing beta weight for the ith predictor, X
i
 score. Varying the values of the exponent of e produces a distinctive sigmoid 

(S-shaped) curve capable of representing probability of takeoff

Figure F1. Sample plot of the sigmoid function y=1/(1+ e-(-5 + x)), showing how the overall value of the prediction 
equation lies between zero and one. In our case, this represents the probability of a pilot taking off, 0-1 (0-100% 
chance), given some particular combination of predictor scores X

1
 through X

n
. When a given pilot’s calculated prob-

ability exceeds an predetermined cutoff level (for example, 0.5), we will predict “Takeoff,” otherwise we will predict 
“No Takeoff.”

Logistic regression has two very attractive advantages over competing statistics. First, as we mentioned, it allows 
us to make predictions. Second, it allows us to test statistical interactions between predictors. Equation 2 shows how 
this is typically implemented, showing the prediction equation with its constant B

0
, one main variable X

1
, plus one 

interaction term involving three factors B
2
, X

2
, and X

3
. Notice that the interaction term literally involves multiplying 

together the separate predictors. This is an important point to which we will presently return.

  (2)

To illustrate this numerically, suppose we tested a model where X
1 
represented a pilot’s score of 34 on the Rohrmann 

Risk Orientation Questionnaire (subscale P), and where X
2
 and X

3 
represented the interaction of Visibility x Ceiling, 

3 (miles) and 1 (feet, in thousands), respectively. In that case, the prediction equation for that individual would be

Since .428 is less than the default cutoff value of .500, we would predict that this particular pilot would not take off.
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 When we run the SPSS analysis on the full data set, the program basically goes through a similar process for 
each individual, computing a set of guesses regarding each pilot’s takeoff. Some guesses will be right, others wrong. 
Then the beta weights are shifted slightly, the analysis is repeated, and the results compared to the priors. If shifting 
the betas in that direction produces improvement, the direction of shift is repeated, otherwise it is reversed. After a 
certain number of iterations, the process halts and summary tables are produced. Here is one of the summary tables 
for an actual model:

The most important numbers in this table, as far as we are concerned, are the β weights, and the significance of 
the Wald statistic (Sig). What the βs here tell us is primarily the direction of the association between a predictor and 
the outcome. Take ROQ_P, whose β is positive. That tells us that an increase in the ROQ_P score predicts an increase 
in takeoff probability. If β had been negative, an increase in the ROQ_P score would have predicted a decrease in 

takeoff probability. The magnitude of β is also important, though its interpretation is more complicated. We have to 
take into account how the predictor was scored. Since β is multiplied by the predictor score, if the predictor scores 
are large (e.g. 1000 feet altitude) then even a small β can be very influential.

The Wald significance (Wald p value) works very much like a normal statistical p value. Wald p tells us the reli-
ability of the measurement, estimating the proportion of times we would expect to find a different result, if we 
repeated the analysis a large number of times. In this particular instance, ROQ_P’s Wald p is .226—too large to be 
considered reliable.

The Constant (β0) in this analysis behaves somewhat like other predictors. However, the Constant is sometimes 
the most difficult term to interpret in a regression model. It can reflect the sample’s base rate for the dependent vari-
able. However, this depends on what other predictors happen to be in the model. If all the other predictors are “Go” 
predictors (ones with β > 0, where an increase in predictor score reflects an increase in the DV), then the Constant 
may take on a contrarian role and assume β < 0). Whereas, had all the predictors been “No-go,” with β < 0, then 
the Constant may have a β > 0. In mixed models, with both Go and No-go predictors, things could go either way. 
Therefore, interpretation of the Constant has to be approached with skill and caution.

Categorical Variables and the Use of Contrasts
The analytic usefulness of logistic regression is a big plus. What is not a plus is the meticulous care that has to go 

into coding the data, setting up the analysis, and interpreting the results. 
For one thing, the technique is susceptible to outliers, as we mentioned. Misentry of even a single data point can 

wreck an analysis.
Another serious difficulty lies in the use of categorical predictors. Although logistic regression is technically capable 

of handling both categorical and continuous variables, special care needs to be taken when using categoricals. As long 
as all variables are continuous, either ordinal or ratio-scale, no special care needs to be taken. But categoricals are 
different. This is because the program takes categoricals coded as letters and converts them internally into zeros and 
ones. For example, we had two experimenters involved in running the participants. Call them “H” and “B.” During 
the SPSS analysis, experimenter “H” is internally converted by the program into either a zero or a one, in order to 
be plugged into equation 2. This conversion introduces the opportunity for serious conceptual errors to be made if 
we are not scrupulous in coding in the data, thinking out our analysis, and interpreting the results.

To drive this idea home, let us take this example further. If, during the analysis, we fail to specify the variable 
EXPTR as categorical (which requires bringing up a dialog box and making some adjustments), then we could 
be making a large mistake. That is because SPSS has automatic defaults and will change any letter into a number, 
whether or not we understand what it is doing. So look at the equation—trying to treat “H” as “nothing” and “B” 
as “one unit of something” makes sense only in a very limited context. And, say we run a model containing an in-

Variables in the Equation

.074 .061 1.465 1 .226 1.077

.197 .095 4.325 1 .038 1.217
-3.396 1.902 3.186 1 .074 .034

ROQ_P
CEIL_K by VIS
Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

Variable(s) entered on step 1: ROQ_P, CEIL_K * VIS .a.
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teraction. What the mathematics actually does is eliminate the effect of ALL the predictor scores in that interaction 
term whenever it calculates a data point involving “H,” because it multiplies the other variables in that interaction 
term by zero for that data point. And this is something we might not have intended to do exactly that way. This is 
the way we do contrasts, but the point is that the program can be doing a contrast we do not know it is doing if we 
do not understand exactly what is happening mathematically.

 Looking at some actual SPSS output will make this a little clearer. Below is some output for the simple model 
EXPTR + Constant. In the first case, “H” was set to internally code as “1” and “B” as “0.” In the second case, those 
codes were reversed.

You can see that the statistical significance (Sig.) of EXPTR does not change, and that this particular variable did 
not produce a reliable effect (.593). The betas for EXPTR are the same, just with opposite sign. This is simply because 
we are logically testing one thing “A” against another thing “not A” and, because there are only two things, so “not 
A” has no degrees of freedom. But, as we would expect from the math and the iterative computational algorithm 
we talked about, the constants turn out to be different. This is because, in the first instance, “H” was exerting the 

primary mathematical effect, since B = 0, whereas B = 1 in the second. But the constant is being updated always. 
Consequently, the two models are related, and similar, but the first one is really measuring “the effect on takeoffs of 
a pilot’s being run by ‘H’,” as opposed to being run by ‘not H’ (i.e. ‘B’).” The negative beta in the first case means 
“pilots were less likely, on the whole, to take off if they were run by ‘H’ than by ‘not H’” (although recall that p is 
not reliable, so we would not ultimately assert any difference) In this case, it so happens that ‘not H’ has to mean 
“B,” but that was only because there were only two experimenters. Had there been three, we would have had to test 
a third contrast, and each would have tested primarily the effect of that one experimenter, set up consciously by us 
to code as “1.” 

Things get even more interesting when it comes to interactions involving more than one categorical variable. The 
essential logic remains the same, however: a) contrasts focus on whatever happens to be coded “1,” and b) interactions 
go to zero whenever any single term in them becomes zero. The bottom line is that we cannot simply mindlessly run 
SPSS and hope to understand the data.

Problems Associated With Logistic Regression
Like all statistics, logistic regression is not a perfect technique (Tabachnick & Fidell, 2000). Some of its weak-

nesses include

1.   Correlation does not imply causation. All regression techniques do is to establish a mathematical relation between 
the presence/absence of one thing and the presence/absence of another. But such correlation does not neces-
sarily mean, for instance, that Factor A causes Factor B. The classic counterexample is the case where Factor A 
and Factor B are both caused by Factor C. In that case, A and B still show correlation, but there is no causation 
whatsoever between A and B.

Variables in the Equation

-.288 .539 .285 1 .593 .750
-.223 .335 .443 1 .506 .800

EXPTR(1)
Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

Variable(s) entered on step 1: EXPTR.a.

Variables in the Equation

.288 .539 .285 1 .593 1.333
-.511 .422 1.468 1 .226 .600

EXPTR(1)
Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

Variable(s) entered on step 1: EXPTR.a.
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2.   Outliers can greatly skew models and parameter estimates. We demonstrated this clearly in Appendix E. Fortunately, 
this problem was easily overcome by winsorizing the data.

3.   Independence of samples is assumed. Logistic regression is basically a between-subjects technique, not for repeated 
measures gathered over time. That was not a factor in this study, however.

4.   Absence of multicollinearity is assumed. If predictors are highly correlated, they are probably measuring the same 
factor, and will not contribute much, if anything additional to a model, other than wrongly inflated significance. 
Fortunately, the models we present did not pose this problem (see Appendix G for the intercorrelation matri-
ces).

5.   The ratio of cases to model predictors is important. A common rule of thumb, seen in many textbooks, is that a 
model should contain no more than one predictor per 10 cases (e.g., per 10 pilots). If a constant is used, this 
should be counted as one predictor However, we noticed an ancillary problem during this analysis, namely

6.   The case-to-predictor ratio issue extends to the number of predictors measured before analysis is commenced. This is 
discussed in greater depth below, and in the Part II report.

Problems Associated With Too Many Predictors in Forward Stepwise Logistic Regression
At some point, we had the intuition that simply trying to examine too many predictors in our primary technique 

of forward stepwise regression could introduce a combinatorial problem. That theoretical problem is easiest illustrated 
using our actual situation. We started with 83 candidate predictors, some of which were eventually eliminated due 
to reasons such as having missing values or being discrete (which often led to unwieldy combinations of contrasts). 
So, in the end, we looked at roughly 60 predictors.

Now, consider the following deductive logic: Suppose you were trying to model some data taken from 30 pilots, 
upon whom you had 60 measurements (predictors) each. This would correspond to, say, our Low Financial Incentive 
group. Then the rule of thumb we mentioned above in Point 5 suggests that all such models should have no more 
than 30/10 = 3 predictors. So far, so good.

The problem comes when we consider random numbers. Suppose every one of our predictors was simply “noise,” 
taken randomly from a Gaussian (normal, bell-shaped) distribution of numbers.  Given that the logistic regression 
prediction equation is basically

  (1)

notice how the exponent term –((β
0
 +) β

1
X

1
...) is really a sum. It will be the sum of our predictors (each weighted). 

That means that, whatever the actual numbers are for each pilot’s predictor scores, we are going to weight them, 
then add them up to form a total, which will then be plugged into Eq. 1. So what are the chances that, given noth-
ing but random numbers, SPSS will ultimately end up finding the precise set of β weights such that the Equation 
1 turns out greater than 0.5 for pilots who subsequently took off, versus a predicted score of less than 0.5 for those 
who did not?

Shockingly, the answer is that it is highly likely. We verified this by running Monte Carlo simulations, a standard 
technique in statistics. Using normal random number generation with µ (mu, mean) of 5 and σ (sigma, standard 
deviation) of 1, we were easily able to duplicate results such as the following:

This illustrates that SPSS essentially “made sense out of nonsense.” It summed the three random pseudo-predictor 
scores for each pilot, shown by the three jagged curves, multiplying each score by the β weights it derived, inserted 
them into Equation 1 and came up with the much-more regular solid “Prediction Equation” line. Notice how closely 
that matched the thick, dashed “Takeoff” line representing a dependent variable score of 1 for a takeoff and 0 for a 
non-takeoff. The three points where those two curves did not closely correspond are labeled as “error.” Since 27 of 
the 30 cases were “predicted” correctly, this model’s predictivity was .90.
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Why is this? Well, look at it from the model’s point of view. In forward stepwise regression, the software first 
chooses one predictor to enter into the model, then a second, a third, and so forth. With 60 predictors, it has 60 
candidates for the first choice, 59 for the second, 58 for the third, and so on. Thus, in a three-single predictor model, 
there are 60*59*58/(3*2*1) = 34,220 possible combinations,1 not even counting interactions. What is happening is 
that, given such a huge number of combinations, at least one is highly likely to form a highly “predictive” sum, even 
though, purely taken individually, none of the individual scores has any meaning whatsoever.

We did 100 Monte Carlo simulations for each of our low- and high-incentive groups, with and without a constant 
in the model. While this was well under the usual standard of 1000-10000 or so simulations per condition, doing 
each simulation was quite tedious, and these 400 runs did have sufficient reliability to illustrate our basic points.

Here we see that the proportion of takeoffs matters. Noise models with a proportion of takeoffs close to .5 show 
lower predictivity and Nagelkerke R2 than ones with a proportion of takeoff equal to .3. But, overall, predictivities 
were still in the 70-90% range, and R2s in the 40-70% range for these random-number models.

Evaluation of the Meaningfulness of Our Data
So how reliable were the conclusions for this Part I report? 

The method used to derive these estimates is detailed in the companion report Pilot willingness to take off into 
marginal weather, Part II: Antecedent overfitting with forward stepwise logistic regression.

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

6.5

7.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Takeoff P2 P4
P40 Prediction Eq.

error
errors

Low  Fin. Incentive group High Fin. Incentive group
models w ith constant models w ith constant
Predictivity Nagel R2 Predictivity Nagel R2

�MonteCarlo 80.4 0.36 76.3 0.48
CI .95 ���� ���� ���� ����

�ActualData 85.7 0.52 75 0.28
� estimated 0.16 0.08 NS NS

1 The reason for the denominator is that the order of terms in the model makes no difference. SPSS logistic treats “ABC” the same as “ACB,” 
“BAC,” “BCA,” “CAB,” and “CBA”—three degrees of freedom for the first choice, two for the second, and one for the last.
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To summarize, the .95 confidence intervals around the predicted means (CI .95) imply that any model exceeding 
these estimates for predictivity and R2 is highly likely to be a better-than-chance model. Confidence intervals are a 
standard approach used in many statistics.

The full data set and high incentive models derived from real pilots’ data in the current study did not differ 
significantly from what could be expected from random number simulations. That is why we limited our primary 
observations to high-level conclusions and the Low Incentive data. The real-pilots’ low-incentive 85.7% predictivity 
did exceed the random-generated Monte Carlo mean of 80.4%, although it did not top the estimate of 89% for the 
.95 CI. Their Nagelkerke R2 of .52 considerably bested the Monte Carlo mean of .36 and came close to meeting 
the .95 CI of .59. So, judging from the Monte Carlo scatterplots (shown in Part II), reliability for the low incentive 
n=28 experimental data was roughly α =.16 for predictivity and α =.08 for R2.

As said previously, for the purposes of a preliminary report such as this, it is often wiser to be somewhat relaxed 
in reporting results than we would be later on in the research process. This is because of the Type I-Type II error 
tradeoff, that is, where excessive stringency in setting significance levels results in a lower number of false positive 
results but strictly at the cost of a higher number of missed results. In other words, at first the strategy involves going 
for breadth of findings. The small number of results that fail to be reliable will be discovered and eliminated as other 
studies cross check results presented here. 
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Pearson Rs, variables with significance p < .0001 (equivalent to .44 ≤ R2 ≤ .61) whose explanation is not obvi-
ous simply because they are correlated by their very nature (e.g. the various measures calculated from BART). The 
upshot here is that a) Each of these correlations is perfectly logical, and; b) Even this small number of correlations 
involves less than half the variance. That means that each instrument presumably measured different factors for the 
most fact, which was as it should be.

BI
S

Im
pu

ls
iv

e
Pl

an
ni

ng
EI

S
Im

pu
ls

iv
ity

EI
S

Ve
nt

ur
es

om
en

es
s

M
PQ

St
re

ss
R

ea
ct

io
n

M
PQ

C
on

tro
l

ST
AI

St
at

e
An

xi
et

y

Non-Evident Correlations 
where R 2 >.44  (N=30 in all cases)

0.660 Eysenck Impulsivity Scale Impulsivity
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APPENDIX H

Predictor significances for the full data set (N=60), showing the reliability (expressed by the Wald p-value) of in-
dividual-predictor models (plus Constant) in logistic regression analysis with Takeoff as the dependent variable. Here 
each model included just one predictor, plus a constant. Subject ID is an identifier, not a predictor, and Latency is 
a descriptor, hence these lack p-values. 

These predictors generally show very low reliability, with the exception of those highlighted in gray. However, 
of those, we should exclude all but incent and ventur from further consideration, due to high numbers of missing 
values (MV) for the other three. Note that the reference category for lic_type was “Private” (N=39), so p expresses 
the analysis “Private versus All Other Categories.” No individual category had a p of < .12 in any case.

Description Name Sig. g MVs Description Name Sig.
Order in w hich S. w as run runorder 0.982 Aviation Safety Attitude scale asa 0.651
Subject ID# idnum Anxiety Sensitivity Index, total score asi 0.143
Takeoff  (Y/N) takeoff Barratt Impulsiveness Scale (BIS-10)--Impulsive Planning scale imp_plan 0.902
Latency  (minutes) latcy BIS--Motor Impulsivity scale imp_motr 0.960
Visibility vis 0.113 BIS-Cognitive Impulsivity scale imp_cog 0.886
Ceiling ceil 0.433 BIS--total score bis 0.896
Incentive incent 0.070 Eysenck Impulsivity Scale (EIS)--Impulsiveness scale impuls 0.705
Experimenter exptr 0.593 EIS--Venturesomeness scale ventur 0.088
Yr started f lying yr_flg 0.785 EIS--Empathy scale empath 0.277
Years f lying, total yrs_flg 0.966 2 Hazardous Events Index hei 0.560

age 0.653 1 Multidimensional Personality Questionnaire, Brief Form (MPQ-BF)
gender 0.461 MPQ--Wellbeing scale w ellbe 0.870

Type of License type_lic 0.612 MPQ--Social Potency scale socpot 0.468
Instrument Rating inst_rtg 0.193 MPQ--Achievement scale achieve 0.492
Total f light hours fh_tot 0.410 2 MPQ--Social Closeness scale socclose 0.290
Flthrs past year fh_12m 0.536 2 MPQ--Stress Reaction scale stress 0.528
Flthrs past 90 days fh_90d 0.444 1 MPQ--Alienation scale alienate 0.677
High-performance A/C, tot hrs hp_tot 0.476 2 MPQ--Aggression scale aggress 0.248
HP last 12 mo hp_12m 0.287 2 MPQ--Control scale control 0.540
HP last 90 days hp_90d 0.151 2 MPQ--Harm Avoidance scale harmav 0.614
Simulated instrument hrs total si_tot 0.440 2 MPQ--Traditionalism scale tradit 0.657
Sim hr last 12 mo si_12m 0.239 2 MPQ--Absorption scale absorpt 0.879
Sim hr last 90 d si_90d 0.235 2 Rohrmann Risk Orientation Questionnaire--Cautiousness scale roq_c 0.868
Actual instrument hrs, total ai_tot 0.467 2 Rohrmann Risk Orientation Questionnaire--Risk Propensity scale roq_p 0.225
AI last 12 mo ai_12m 0.776 2 Sensation-Seeking Scale sss 0.886
AI last 90 d ai_90d 0.868 2 State-Trait Anxiety Inventory--State anx_st 0.853
Personal visibility minimum vis_min 0.386 2 1 State-Trait Anxiety Inventory--Trait anx_tr 0.736
Personal ceiling minimum ceil_min 0.955 2 1 Balloon Analogue Risk Task (BART)--test duration durn_sec 0.565
Do you adjust minima? min_adj 0.398 3 BART--average pumps pumpsavg 0.335
Flow n this route before? fln_rt 0.427 3 BART--average pumps, low -payoff condition pmpavglo 0.465
Distance through w x imp? dthruw x 0.813 3 BART--average pumps, medium-payoff condition pmpavgm 0.630
$ bonus motivating? (Hi Incent only)buck_mot 0.071 32 BART--average pumps, high-payoff condition pmpavghi 0.198
Passengers change TO w illingness pass_mot 0.837 4 BART--adjusted average pmpadjav 0.373
More flt hrs change TO w illingness?fhincmot 0.893 5 BART--adjusted average, low -pay condn padjavlo 0.782
Mission-critical chg. w -ness? missnmot 0.020 13 BART--adjusted average, med-pay condn padjavme 0.868
Flow n Malibu chg w -ness? mal_sub 0.840 10 BART--adjusted average, high-pay condn padjavhi 0.207
Being a simulator chg w -ness? sim_mot 0.127 9 BART--total payoff (cents) pay_tot 0.790
...more specif ically (re prev Q) simmotsb 0.138 14 BART--total payoff, low -pay cond'n pay_low 0.979
How  signif icant w as the $ to you? buck_sig 0.164 9 BART--total payoff, med-pay cond'n pay_med 0.630
Would crash embarrass you? crashsig 0.048 20 BART--total payoff, high-pay cond'n pay_hi 0.304
How  much did you consider traff ic?tx_mot 0.919 49 BART--total balloon explosions bang_tot 0.259
Ever had a bad w x experience? badw x 0.318 5 BART--explosions, low -pay cond'n bang_low 0.422

BART--explosions, med-pay cond'n bang_med 0.325
BART--explosions, high-pay cond'n bang_hi 0.305
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Description Name Sig. g MVs Description Name Sig.
Order in w hich S. w as run runorder 0.675 Aviation Safety Attitude scale asa 0.645
Subject ID# idnum Anxiety Sensitivity Index, total score asi 0.127
Takeoff  (Y/N) takeoff Barratt Impulsiveness Scale (BIS-10)--Impulsive Planning scale imp_plan 0.615
Latency  (minutes) latcy BIS--Motor Impulsivity scale imp_motr 0.957
Visibility vis 0.064 BIS-Cognitive Impulsivity scale imp_cog 0.398
Ceiling ceil 0.691 BIS--total score bis 0.562
Incentive incent Eysenck Impulsivity Scale (EIS)--Impulsiveness scale impuls 0.394
Experimenter exptr 0.261 EIS--Venturesomeness scale ventur 0.713
Yr started f lying yr_flg EIS--Empathy scale empath 0.881
Years f lying, total yrs_flg 0.470 2 Hazardous Events Index hei 0.221

age 0.942 1 Multidimensional Personality Questionnaire, Brief Form (MPQ-BF)
gender 0.815 MPQ--Wellbeing scale w ellbe 0.896

Type of License type_lic 0.999 MPQ--Social Potency scale socpot 0.269
Instrument Rating inst_rtg 0.873 MPQ--Achievement scale achieve 0.574
Total f light hours fh_tot 0.591 1 MPQ--Social Closeness scale socclose 0.590
Flthrs past year fh_12m 0.911 2 MPQ--Stress Reaction scale stress 0.544
Flthrs past 90 days fh_90d 0.907 MPQ--Alienation scale alienate 0.787
High-performance A/C, tot hrs hp_tot 0.347 2 MPQ--Aggression scale aggress 0.673
HP last 12 mo hp_12m 0.713 2 MPQ--Control scale control 0.930
HP last 90 days hp_90d 0.328 2 MPQ--Harm Avoidance scale harmav 0.641
Simulated instrument hrs total si_tot 0.995 MPQ--Traditionalism scale tradit 0.203
Sim hr last 12 mo si_12m 0.588 2 MPQ--Absorption scale absorpt 0.961
Sim hr last 90 d si_90d 0.982 2 Rohrmann Risk Orientation Questionnaire--Cautiousness scale roq_c 0.345
Actual instrument hrs, total ai_tot 0.482 2 Rohrmann Risk Orientation Questionnaire--Risk Propensity scale roq_p 0.637
AI last 12 mo ai_12m 0.753 1 Sensation-Seeking Scale sss 0.888
AI last 90 d ai_90d 0.512 1 State-Trait Anxiety Inventory--State anx_st 0.484
Personal visibility minimum vis_min 0.523 State-Trait Anxiety Inventory--Trait anx_tr 0.393
Personal ceiling minimum ceil_min 0.487 1 Balloon Analogue Risk Task (BART)--test duration durn_sec 0.864
Do you adjust minima? min_adj 0.244 BART--average pumps pumpsav 0.341
Flow n this route before? fln_rt 0.265 BART--average pumps, low -payoff condition pmpavglo 0.552
Distance through w x imp? dthruw x 0.627 BART--average pumps, medium-payoff condition pmpavgm 0.462

BART--average pumps, high-payoff condition pmpavgh 0.234
Passengers change TO w illingnesspass_mot 0.175 1 BART--adjusted average pmpadjav 0.460
More flt hrs change TO w illingness fhincmot 0.204 BART--adjusted average, low -pay condn padjavlo 0.975
Mission-critical chg. w -ness? missnmot 0.024 7 BART--adjusted average, med-pay condn padjavme 0.768
Flow n Malibu chg w -ness? mal_sub 0.854 4 BART--adjusted average, high-pay condn padjavhi 0.186
Being a simulator chg w -ness? sim_mot 0.910 3 BART--total payoff (cents) pay_tot 0.749
...more specif ically (re prev Q) simmotsb 0.408 7 BART--total payoff, low -pay cond'n pay_low 0.836

BART--total payoff, med-pay cond'n pay_med 0.990
Would crash embarrass you? crashsig 0.337 12 BART--total payoff, high-pay cond'n pay_hi 0.365
How  much did you consider traff ic tx_mot 0.422 26 BART--total balloon explosions bang_tot 0.272
Ever had a bad w x experience? badw x 0.472 BART--explosions, low -pay cond'n bang_low 0.458

BART--explosions, med-pay cond'n bang_me 0.403
BART--explosions, high-pay cond'n bang_hi 0.229

APPENDIX I

 Predictor significances for the Low-Incentive data set (N=30), showing the reliability (Wald p-value) of indi-
vidual-predictor models (plus Constant) in logistic regression analysis with Takeoff as the dependent variable. The 
reference category on type_lic is “Private,” on simmotsb it is “Didn’t matter.” Keep in mind that the SPSS reference 
category is the one being weighted “0” in the logistic regression prediction equation.
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APPENDIX J

Description Name Sig. g MVs Description Name Sig.
Order in which S. was run runorder 0.612 Aviation Safety Attitude scale asa 0.700
Subject ID# idnum Anxiety Sensitivity Index, total score asi 0.910
Takeoff  (Y/N) takeoff Barratt Impulsiveness Scale (BIS-10)--Impulsive Planning scale imp_plan 0.809
Latency  (minutes) latcy BIS--Motor Impulsivity scale imp_motr 0.820
Visibility vis 0.655 BIS-Cognitive Impulsivity scale imp_cog 0.595
Ceiling ceil 0.466 BIS--total score bis 0.829
Incentive incent N/A Eysenck Impulsivity Scale (EIS)--Impulsiveness scale impuls 0.668
Weather severity wxsvrty 0.364 EIS--Venturesomeness scale ventur 0.085
Experimenter exptr 0.080 EIS--Empathy scale empath 0.296
Years flying, total yrs_flg 0.451 Hazardous Events Index hei 0.976

age 0.420 1 Multidimensional Personality Questionnaire, Brief Form (MPQ-BF)
gender 0.476 MPQ--Wellbeing scale wellbe 0.980

Type of License type_lic 0.933 MPQ--Social Potency scale socpot 0.947
Instrument Rating inst_rtg 0.069 MPQ--Achievement scale achieve 0.735
Total flight hours fh_tot 0.420 2 MPQ--Social Closeness scale socclose 0.117
Flthrs past year fh_12m 0.385 1 MPQ--Stress Reaction scale stress 0.980
Flthrs past 90 days fh_90d 0.192 MPQ--Alienation scale alienate 0.304
High-performance A/C, tot hrs hp_tot 0.333 MPQ--Aggression scale aggress 0.267
HP last 12 mo hp_12m 0.090 2 MPQ--Control scale control 0.622
HP last 90 days hp_90d 0.164 2 MPQ--Harm Avoidance scale harmav 0.337
Simulated instrument hrs total si_tot 0.105 MPQ--Traditionalism scale tradit 0.079
Sim hr last 12 mo si_12m 0.036 MPQ--Absorption scale absorpt 0.823
Sim hr last 90 d si_90d 0.130 1 Rohrmann Risk Orientation Questionnaire--Cautiousness scale roq_c 0.240
Actual instrument hrs, total ai_tot 0.625 1 Rohrmann Risk Orientation Questionnaire--Risk Propensity scale roq_p 0.325
AI last 12 mo ai_12m 0.481 1 Sensation-Seeking Scale sss 0.937
AI last 90 d ai_90d 0.201 2 State-Trait Anxiety Inventory--State anx_st 0.161
Personal visibility minimum vis_min 0.519 1 State-Trait Anxiety Inventory--Trait anx_tr 0.512
Personal ceiling minimum ceil_min 0.726 1 1 Balloon Analogue Risk Task (BART)--test duration durn_sec 0.437
Do you adjust minima? min_adj 0.999 3 BART--average pumps pumpsavg 0.703
Flown this route before? fln_rt 0.485 3 BART--average pumps, low-payoff condition pmpavglo 0.453
Distance through wx imp? dthruwx 0.638 3 BART--average pumps, medium-payoff condition pmpavgme 0.812
$ bonus motivating? (Hi Incent only) buck_mot 0.071 2 BART--average pumps, high-payoff condition pmpavghi 0.688
Passengers change TO willingness? pass_mot 0.323 3 BART--adjusted average pmpadjav 0.682
More flt hrs change TO willingness? fhincmot 0.491 5 BART--adjusted average, low-pay condn padjavlo 0.563
Mission-critical chg. w-ness? missnmot 0.178 6 BART--adjusted average, med-pay condn padjavme 0.835
Flown Malibu chg w-ness? mal_sub 0.728 6 BART--adjusted average, high-pay condn padjavhi 0.874
Being a simulator chg w-ness? sim_mot 0.159 6 BART--total payoff (cents) pay_tot 0.679
...more specifically (re prev Q) simmotsb 0.139 7 BART--total payoff, low-pay cond'n pay_low 0.868
How significant was the $ to you? buck_sig 0.126 6 BART--total payoff, med-pay cond'n pay_med 0.999
Would crash embarrass you? crashsig 0.135 8 BART--total payoff, high-pay cond'n pay_hi 0.995
How much did you consider traffic? tx_mot 0.999 23 BART--total balloon explosions bang_tot 0.503
Ever had a bad wx experience? badwx 0.679 5 BART--explosions, low-pay cond'n bang_low 0.482

BART--explosions, med-pay cond'n bang_med 0.533
BART--explosions, high-pay cond'n bang_hi 0.783

 High Incentive data, N=30, single variable (plus Constant) models.  Reference category for type_lic is �Private� 
(no individual p < .187).  Reference category for simmotsb is �Positives and negatives cancel� (no individual p < 
.072).



K1



K1

�����������

Interactions  vis x ceil x factor below
Name MV Sig. Ref Sig. Name Sig.

runorder 0.189 imp_motr 0.381
imp_cog 0.253

exptr 0.134 B H 0.042 bis 0.392
yrs_flg 0.604 impuls 0.418
age 0.655 ventur 0.252
gender 0.942 M F 0.444 empath 0.579
type_lic 0.788 Private hei 0.466
inst_rtg 0.375 N Y 0.131 w ellbe 0.482
fh_tot 0.282 socpot 0.512
fh_12m 0.559 achieve 0.606
fh_90d 0.473 socclose 0.938
hp_tot 0.380 stress 0.362
hp_12m 0.230 alienate 0.123
hp_90d 0.717 aggress 0.083
si_tot 0.244 control 0.772
si_12m 0.379 harmav 0.764
si_90d 0.802 tradit 0.054
ai_tot 0.305 absorpt 0.896
ai_12m 0.445 roq_c 0.201
ai_90d 0.177 roq_p 0.345
vis_min 1 0.308 sss 0.474
ceil_min 1 0.398 anx_st 0.179
min_adj 3 0.101 N Y 0.997 anx_tr 0.235
fln_rt 3 0.363 N Y 0.093 durn_sec 0.207
dthruwx 3 0.859 N Y 0.961 pumpsavg 0.419
buck_mot 2 0.052 N Y 0.137 pmpavglo 0.462
pass_mot 3 0.388 pmpavgme 0.568
fhincmot 5 0.194 pmpavghi 0.281
missnmot 6 0.291 pmpadjav 0.372
mal_sub 6 0.754 padjavlo 0.461
sim_mot 6 0.211 padjavme 0.519
simmotsb 7 0.316 "+/- cancel" padjavhi 0.314
buck_sig 6 0.523 pay_tot 0.453
crashsig 8 0.227 pay_low 0.427
tx_mot 23 0.653 pay_med 0.568
badwx 5 0.806 N Y 0.658 pay_hi 0.398

bang_tot 0.438
asa 0.480 bang_low 0.553
asi 0.288 bang_med 0.571
imp_plan 0.643 bang_hi 0.278

 High Incentive group only, N = 30.  Reference category for type_lic was �Private,� and results reflect composite 
significance for all license types.  In no case was p < .436 for license type   Reference category for simmotsb was 
�Positives and negatives cancelled.�  We were unable to coerce SPSS into defining the reference category as �Didn�t 
matter.�  SPSS apparently sorts categoricals into frequency counts and assigns its �First� and �Last� categories 
according to frequency, rather than to the order in which categories are coded.  In other words, recoding makes no 
difference.  And, since its only options for assigning reference are �First� or �Last,� it was impossible to equilibrate 
the analysis of simmotsb with its Low Incentive counterpart.  In any event, the composite significance of simmotsb
and all its components were all  > .165, so the matter is irrelevant 
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Interactions  buck_mot x factor below
Name MV Sig. Ref Sig. Name MV Sig. Ref Sig.

runorder 2 0.078 N Y 0.144 asa 2 0.066 N Y 0.061
vis 2 0.060 N Y 0.125 asi 2 0.083 N Y 0.187
ceil 2 0.064 N Y 0.112 imp_plan 2 0.055 N Y 0.053
exptr 2 0.064 NH YH 0.916 imp_motr 2 0.049 N Y 0.051

0.877 NB YB 0.068 imp_cog 2 0.048 N Y 0.080
yrs_flg 2 0.531 N Y 0.253 bis 2 0.041 N Y 0.050
age 2 0.129 N Y 0.083 impuls 2 0.020 N Y 0.101
gender 2 0.469 NM YM 0.706 ventur 2 0.021 N Y 0.139

0.030 NF YF 0.071 empath 2 0.200 N Y 0.120
type_lic 2 0.974 NP YP 0.999 hei 2 0.301 N Y 0.194
inst_rtg 2 0.811 NN YN 0.066 w ellbe 2 0.104 N Y 0.135

0.047 NY YY 0.877 socpot 2 0.116 N Y 0.167
fh_tot 2 0.231 N Y 0.134 achieve 2 0.045 N Y 0.069
fh_12m 2 0.670 N Y 0.225 socclose 2 0.321 N Y 0.061
fh_90d 2 0.904 N Y 0.253 stress 2 0.181 N Y 0.227
hp_tot 2 0.897 N Y 0.152 alienate 2 0.156 N Y 0.527
hp_12m 2 0.860 N Y 0.103 aggress 2 0.127 N Y 0.568
hp_90d 2 0.649 N Y 0.070 control 2 0.363 N Y 0.248
si_tot 2 0.917 N Y 0.113 harmav 2 0.801 N Y 0.088
si_12m 2 0.200 N Y 0.244 tradit 2 0.053 N Y 0.411
si_90d 2 0.230 N Y 0.728 absorpt 2 0.027 N Y 0.067
ai_tot 2 0.315 N Y 0.190 roq_c 2 0.084 N Y 0.166
ai_12m 2 0.107 N Y 0.246 roq_p 2 0.032 N Y 0.058
ai_90d 2 0.156 N Y 0.700 sss 2 0.064 N Y 0.080
vis_min 2 0.084 N Y 0.052 anx_st 2 0.022 N Y 0.138
ceil_min 2 0.387 N Y 0.137 anx_tr 2 0.050 N Y 0.062
min_adj 3 0.007 NN YN 0.228 durn_sec 2 0.122 N Y 0.336

0.999 NY YY 0.999 pumpsavg 2 0.063 N Y 0.044
fln_rt 3 0.030 NN YN 0.999 pmpavglo 2 0.032 N Y 0.039

0.707 NY YY 0.999 pmpavgme 2 0.095 N Y 0.038
dthruwx 3 0.092 NN YN 0.999 pmpavghi 2 0.095 N Y 0.075

0.684 NY YY 0.825 pmpadjav 2 0.070 N Y 0.044
pass_mot 4 0.169 N Y 0.499 padjavlo 2 0.039 N Y 0.029
fhincmot 5 0.256 N Y 1.000 padjavme 2 0.132 N Y 0.039
missnmot 6 0.477 N Y 0.999 padjavhi 2 0.122 N Y 0.083
mal_sub 6 0.945 N Y 0.503 pay_tot 2 0.059 N Y 0.043
sim_mot 6 0.251 N Y 1.000 pay_low 2 0.042 N Y 0.029
simmotsb 7 0.442 N Y 0.168 pay_med 2 0.107 N Y 0.042
buck_sig 6 0.031 N Y 0.120 pay_hi 2 0.083 N Y 0.071
crashsig 8 0.124 N Y 0.387 bang_tot 2 0.080 N Y 0.054
tx_mot 23 0.999 N Y 0.999 bang_low 2 0.047 N Y 0.052
badwx 5 0.840 NN YN 0.414 bang_med 2 0.120 N Y 0.082

0.143 NY YY 0.212 bang_hi 2 0.153 N Y 0.077

High Incentive, N = 30.  Reference category for type_lic is �Private.�  Reference category for simmotsb is �Positives 
and negatives cancel.� The reason for most of the missing values here is that buck_mot had two itself, so each 
analysis therefore automatically had to reflect at least these two. 




